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A brief history of majority logic

Before leaving this section on synthesis, several com-
ments seem appropriate. The reader’s first reaction to
the foregoing may well be that the one thing which the
general area of switching circuit theory does ot need is
another method for synthesizing combinational logic.
However, this method does offer several features which
may make it more desirable in certain applications:
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A Truth Table Method for the

of Combinational Logic
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A brief history of majority logic

In fact, (zyz) is probably the most important ternary operation in the entire|
universe, because it has amazing properties that are continually being discoveredf
and rediscovered. j

[D.E. Knuth, The Art of Computer Programming 4A (2011)]
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Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
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Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
=X1X2 \/X1X3 \/X2X3

Majority rule
(x1x1%2) = X1

(x1X1%2) = %2

Containment of AND and OR
<X1OX2> = X1 /\Xz
(X] 1X2> = X1 \/XZ

(X1...%Xn) =
<X1 e X1X2 .
<X]7_(1Xz ..
<X1 X[%]O
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Majority: Algebraic rules

Commutativity rule

(xyz) = (yzx) = (z2xy)

Associativity rule

(xu({yuz)) = ((xuy)uz) Mnemonic: (xo (yoz)) = ((xoy)oz)

Distributivity rule
(xu(yvz)) = ((xuy)v(xuz)) Mnemonic: (xo (y x z)) = ((xoy) X (xo0z))

Inverter propagation rule
(xyz) = (xyz)
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Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of AND and OR gates with unbounded fan-in, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of MAJ gates with unbounded fan-in, and inverters

» Relationship: AC® ¢ TC®  NC!

integer division and integer multiplication are in TC, but not in AC®
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One "fascinating” property of AND and OR
X1 AX2 N Axn 1 Axn =X A2 A (X1 Axn) )
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Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
XTAX2 A AxXn_1 Axn = x1 A X2 A (- (xn—1 Axn)--+)))
xiVxaV---Vxp_1Vxn=xX1 VX2V ([ (xn_1Vxn)-)))

Not so easy with majority
(x1x2%x3X4X5) = (X7 (X2X3X4)(X5%X4 (X3X2X71)))

(x1x2X3X4X5X6X7) = (X7(X3(XaX5%X6) (X1X2(XaX5%X6))) (X6 (X1X2X3) (X4X5(X1X2X3))))

Open problem: What are the optimum majority-3 networks to realize majority-n?
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Monotone functions

Montone functions

A Boolean function f(x7,...,xn) is if fg, = fx, for T <i<n.

Schensted decomposition

If f(x1,%2,%X3,...,Xn) is monotone, then

f(x1)X2)X3)---)Xn):<f( ) >X3>--->Xn)f(x1) ) )---)Xn)f( y X2, )---)Xn)>

» Since majority-n. is monotone, we can use Schensted decomposition to map
majority-n into majority-3
» Inner subfunctions remain monotone — recursive application

» But: Upper bound is exponential!
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> Sort all input bits and pick the middle one from the sorted list

» Sorter networks consist only of comparators, which in the Boolean case can be
implemented in terms of AND and OR:

xIx/\y = (x0y)
y@xVy=(xly)

> Sorter networks for 7 bits requires 16 comparisons (optimal), we can
drop 2 — 28 majority gates
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Majority-n from sorter networks

» |dee: Sort all input bits and pick the middle one from the sorted list

» Sorter networks consist only of comparators, which in the Boolean case can be
implemented in terms of AND and OR:

xIx/\y = (x0y)
y@xVy=(xly)

» Example: Sorter networks for 7 bits requires 16 comparisons (optimal), we can
drop 2 — 28 majority gates
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Majority-n from median selection

> An algorithm that finds the median of given values {a;,...,an}
using O(n) comparisons (it does not sort all elements)

> (X7 ...xn) = [median of {x1,...,xn}]
» Good asymptotic upper bound, but the construction is quite complex

» Majority-7 based on median selection construction has at least 42 majority gates
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Shannon decomposition and majority decomposition

Shannon decomposition

For any Boolean function f(x1,...,%xn) we have

f:Xi?fx

i

sz = xifx @ Xifx,

Majority decomposition [S.B. Akers Jr., 1961]

For a monotone Boolean function f(x1,...,X%n) we have

f= <Xifxif>_q> = X;fol (&) Xifi-l &) fxif;i
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From BDDs to majority graphs

<X]X2X3X4X5> <X1X2X3X4X5>

<X]X2X3X4X5>

Binary decision diagram Majority graph Majority graph (compact)



Upper bounds for majority-n decomposition

n 3 5 7 9 11 13 15 17
Optimum 1 4 7

BDDs 3 8 15 24 35 48 63 80
Sorter networks 6 18 32 50 70 90 112 142
Median selection* 18 30 42 53 65 77 89 101

*optimistic: takes only into account number of comparators



Deriving the optimum majority-5

) Apply distributivity rule
g.g <<X4X5O>X3 <X4X51>> = <X4X5 <O‘<;1>> = <X4X3X5>
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Deriving the optimum majority-5
Apply relevance rule

(M
@.@ (xyz) = (xyzy/g)
@ G @
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Deriving the optimum majority-5
0 Apply relevance rule
g.g bez) = (ayze )
@ @ @ (Ox3(0xaxs)) = (0x3(0xax5)0/55) = (0x3(X3X4X5))

ONE (4) (Ix3(Txaxs)) = (Ix3(Txaxs)1 /,) = (1x3 (Raxaxs))
1 5 T



Deriving the optimum majority-5

Apply distributivity rule
<<X2AB>X] <X2AC>> = <X2A(BX] C>>




Deriving the optimum majority-5

Apply distributivity rule
<<X3AO>X] <X3A]>> = <X3A<0X] 1>> = <X3AX1>




Deriving the optimum majority-5
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Deriving the optimum majority-7

Identify majority-5

There are actually four majority-5 subnetworks in the
graph




Deriving the optimum majority-7

Consider left branch




Deriving the optimum majority-7
1) Identify majority-3
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Deriving the optimum majority-7

1) Relevance
2) Changes constants into primary inputs
3 ()
9.9
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Deriving the optimum majority-7
) Distributivity
(2)
(3)
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Deriving the optimum majority-7

Distributivity




Deriving the optimum majority-7

Remove | and T




Deriving the optimum majority-7

Replacement rule
We have

(xyz) = (Wyz)
if and only if (y®z)(wdx)=0.
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Deriving the optimum majority-7

Distributivity + Ms optimum




Deriving the optimum majority-7

Swapping rule

Let vi,v2, Wy, W not depend on x and y. We have

Oc(yviwi){yvawa)) = (xyvow){yviwa)),

if (vi @v2)(w; ®&wy)=0.




Deriving the optimum majority-7

Distributivity and relevance




Deriving the optimum majority-7

@ Optimum result

® @
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Conclusions

> How many majority-3 operations do we need to realize
majority-n (precisely)?

» Constructions that were used to show good asymptotic upper bounds are not
helpful for small n

» Proposed construction method based on BDDs by exploiting decomposition
property for monotone functions

> Majority-9 and more insight into analytical derivations
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