The fascinating properties of majority
Mathias Soeken
Integrated Systems Laboratory, EPFL, Switzerland

¥ mathias.soeken@epfl.ch @ msoeken.github.io) msoeken/cirkit

(P

mailto:mathias.soeken@epfl.ch
https://msoeken.github.io
https://github.com/msoeken/cirkit

A brief history of majority logic

[S.B. Akers Jr., IRE Trans. EC-10 (1961), 604—615]

A brief history of majority logic

Before leaving this section on synthesis, several com-
ments seem appropriate. The reader’s first reaction to
the foregoing may well be that the one thing which the
general area of switching circuit theory does ot need is
another method for synthesizing combinational logic.
However, this method does offer several features which
may make it more desirable in certain applications:

B e O I N, e, el I B O SN o, S el O SO

[S.B. Akers Jr., IRE Trans. EC-10 (1961), 604-615]

P .

A brief history of majority logic

A Truth Table Method for the

of Combinational Logic

',n_l eg (-:a-..m.-.;.u
i b *HE
)'uu

e e 10
T N

HEEAER HEE

Do tun 1w

Srnte i, VB Semekd ond

SN T
R .);"F@-_ m.;.../mmmw
REREEE EEREEE

BRI it Guking, end withont

EEACEE i o i

5T RGN SR
irid {5 i
wogle).

[C. Schensted, Letter to Martin Gardner, Dec 9, 1978|

A brief history of majority logic

A Truth Table Method for the
of Combin:

. v -
: :zh%w’ﬂffzwﬁww« — o
oté?i;ua-v ok /‘.IJ-:).}.?,,.’J,
”—?:Lzr,aprn;z—, fun ke
B e
@m@m.mé?" rg@mm..&y The Art of
i VR e
WETRIRIR A e S Computer

PR S B 3
i PExn
NEERER BEREHE Erogramining
”’,‘?"’;..“:,,’lﬁ,"z L) T-:‘m“:gi?‘:k T marked cand VOLUME 4A
‘E PF_EE? " l@ EEJ EE jElc] . Combinatorial Algorithms
e .
FEREER EEREARE
BRI it Guking, end withont

EEHEE *-w‘n; i el of s oy DONALD E. KNUTH
N:;f) (32 from Bt in i

[D.E. Knuth, The Art of Computer Programming 4A (2011)]

A brief history of majority logic

In fact, (zyz) is probably the most important ternary operation in the entire|
universe, because it has amazing properties that are continually being discoveredf
and rediscovered. j

[D.E. Knuth, The Art of Computer Programming 4A (2011)]

A brief history of majority |

nd ghe e vk

HEREER

e ol

HEREFER
o]
HEBaRFR

Ul m;‘um mariare

i, =
EHEBERE

9 Ropa Gy o Lot]

ogic

2]

T O @ manian o ik iy g

BEAERE 2
9T ko o B e et

Tl ek Jockrg

EE ERER
I')&}%nﬂunaﬂnmr&d

B
HEEAEE
Vit Tling, end wthosst
Jancing 21 Prigevy
u,ﬂ?&m;}f:m
).

THE CLASSIC WORK
EXTENDED AND REFINED

The Art of

Computer
Programming

Combinatorial Algorithms
Part 1

DONALD E. KNUTH

Majority-Inverter Graph: A Novel Data-Structure and
Al jation

[L.G. Amaru, P.-E. Gaillardon, and G. De Micheli, DAC 51 (2014), 194:1-194:6]

Majority function

(x1%2x3)

Majority function

(x1x2x3) = (x1 Vx2)(x1 Vx3) (%2 V X3)

Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
=X1X2 \/X1X3 \/X2X3

Majority function

(x1x2x3) = (x1 Vx2)(x1 Vx3)(x2 Vx3) (X1...xn) =[x1 4+ xn > 3]
=X1X2 \/X1X3 \/X2X3

Majority function

(xixax3) = (x1 Vx2)(x1 Vx3)(x2 Vx3) (x1..

=X1X2 \/X1 X3 \/X2X3

Majority rule
(x1x1%2) = X1

(x1X1%2) = X2

Xn) =1+ xn > 5]

Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
=X1X2 \/X1X3 \/X2X3

Majority rule
(x1x1%2) = X1

(x1X1%2) = %2

<X] ..

<X1 .o

<X17_(]Xz..

.X1X2.

Xn) =

[X]+"'

SX[a) =

-Xn—1>

+%Xn > 5]
X1
< .Xn_1>

Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
=X1X2 \/X1X3 \/X2X3

Majority rule
(x1x1%2) = X1

(x1X1%2) = %2

Containment of AND and OR
<X1OX2> = X1 /\Xz
(X] 1X2> = X1 \/XZ

<X] ..

<X1 .o

<X]7_(1 X2..

.X1X2.

Xn) =

[X]+

SX[a) =

-Xn—1>

+%Xn > 5]

X1

(x2

-Xn—1>

Majority function

(xax2x3) = (x1 Vx2)(x1 Vx3)(x2 V x3)
=X1X2 \/X1X3 \/X2X3

Majority rule
(x1x1%2) = X1

(x1X1%2) = %2

Containment of AND and OR
<X1OX2> = X1 /\Xz
(X] 1X2> = X1 \/XZ

(X1...%Xn) =
<X1 e X1X2 .
<X]7_(1Xz ..
<X1 X[%]O
(X] X[%ﬂ

X1+ +xn > 5]

Xf]> X1

-Xn—1> < -Xn—1>

.O>:X1/\"-/\X[%‘|
1>:X]\/”-\/X[%1

Majority: Algebraic rules

Commutativity rule

(xyz) = (yzx) = (z2xy)

Majority: Algebraic rules

Commutativity rule

(xyz) = (yzx) = (z2xy)

Associativity rule

(xu(yuz)) = ((xuy)uz)

Mnemonic: (xo (yoz)) = ((xoy)oz)

Majority: Algebraic rules

Commutativity rule

(xyz) = (yzx) = (z2xy)

Associativity rule

(xu({yuz)) = ((xuy)uz) Mnemonic: (xo (yoz)) = ((xoy)oz)

Distributivity rule
(xu(yvz)) = ((xuy)v(xuz)) Mnemonic: (xo (y x z)) = ((xoy) X (xo0z))

Majority: Algebraic rules

Commutativity rule

(xyz) = (yzx) = (z2xy)

Associativity rule

(xu({yuz)) = ((xuy)uz) Mnemonic: (xo (yoz)) = ((xoy)oz)

Distributivity rule
(xu(yvz)) = ((xuy)v(xuz)) Mnemonic: (xo (y x z)) = ((xoy) X (xo0z))

Inverter propagation rule
(xyz) = (xyz)

Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of AND and OR gates with unbounded fan-in, and inverters

Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of AND and OR gates with unbounded fan-in, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of MAJ gates with unbounded fan-in, and inverters

Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of AND and OR gates with unbounded fan-in, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of MAJ gates with unbounded fan-in, and inverters

» Relationship: AC® ¢ TC® NC!

Results and motivation from circuit complexity

> contains families of Boolean circuits with logarithmic depth, and a polynomial
number of 2-input gates, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of AND and OR gates with unbounded fan-in, and inverters

> contains families of Boolean circuits with constant depth, a polynomial
number of MAJ gates with unbounded fan-in, and inverters

» Relationship: AC® ¢ TC® NC!

integer division and integer multiplication are in TC, but not in AC®

Express majority-n in terms of majority-3

One “fascinating” property of AND and OR

Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
XTAX2 A AxXn_1 Axn = x1 A X2 A (- (xn—1 Axn)--+)))
xiVxaVe--Vxp 1 Vxn=x1V(x2V ([(xn_1Vxn))

Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
X1 AX2 N Axn 1 Axn =X A2 A (X1 Axn))
X1 VoV - Vxn_1Vxn=x1Vx V(- xn_1Vxn)-)))

Not so easy with majority

Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
XTAX2 A AxXn_1 Axn = x1 A X2 A (- (xn—1 Axn)--+)))
xiVxaVe--Vxp 1 Vxn=x1V(x2V ([(xn_1Vxn))
Not so easy with majority

(x1x2x3X4X5) = (X1 (X2X3X4)(X5X4(X3X2X1)))

Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
X1 AX2 N Axn 1 Axn =X A2 A (X1 Axn))
xiVxaV---Vxp_1Vxn=xX1 VX2V ([(xn_1Vxn)-)))

Not so easy with majority
(x1x2%x3X4X5) = (X7 (X2X3X4)(X5%X4 (X3X2X71)))

(x1x2X3X4X5X6X7) = (X7(X3(XaX5%X6) (X1X2(XaX5%X6))) (X6 (X1X2X3) (X4X5(X1X2X3))))

Express majority-n in terms of majority-3
One "fascinating” property of AND and OR
XTAX2 A AxXn_1 Axn = x1 A X2 A (- (xn—1 Axn)--+)))
xiVxaV---Vxp_1Vxn=xX1 VX2V ([(xn_1Vxn)-)))

Not so easy with majority
(x1x2%x3X4X5) = (X7 (X2X3X4)(X5%X4 (X3X2X71)))

(x1x2X3X4X5X6X7) = (X7(X3(XaX5%X6) (X1X2(XaX5%X6))) (X6 (X1X2X3) (X4X5(X1X2X3))))

Open problem: What are the optimum majority-3 networks to realize majority-n?

Monotone functions

Montone functions

A Boolean function f(x1,...,xn) is monotone if fg, — fy, for 1 <i < n.

Monotone functions

Montone functions
A Boolean function f(x7,...,xn) is if fg, = fx, for T <i<n.

Schensted decomposition

If f(x1,%2,%X3,...,Xn) is monotone, then

f(x1)X2)X3)---)Xn):<f() >X3>--->Xn)f(x1)))---)Xn)f(y X2,)---)Xn)>

» Since majority-n. is monotone, we can use Schensted decomposition to map
majority-n into majority-3

Monotone functions
Montone functions

A Boolean function f(x7,...,xn) is if fg, = fx, for T <i<n.

Schensted decomposition

If f(x1,%2,%X3,...,Xn) is monotone, then

f(x1)X2)X3)---)Xn):<f() >X3>--->Xn)f(x1)))---)Xn)f(y X2,)---)Xn)>

» Since majority-n. is monotone, we can use Schensted decomposition to map
majority-n into majority-3

» Inner subfunctions remain monotone — recursive application

Monotone functions

Montone functions

A Boolean function f(x7,...,xn) is if fg, = fx, for T <i<n.

Schensted decomposition

If f(x1,%2,%X3,...,Xn) is monotone, then

f(x1)X2)X3)---)Xn):<f() >X3>--->Xn)f(x1)))---)Xn)f(y X2,)---)Xn)>

» Since majority-n. is monotone, we can use Schensted decomposition to map
majority-n into majority-3
» Inner subfunctions remain monotone — recursive application

» But: Upper bound is exponential!

Majority-n from sorter networks

» |dee: Sort all input bits and pick the middle one from the sorted list

Majority-n from sorter networks

> Sort all input bits and pick the middle one from the sorted list

» Sorter networks consist only of comparators, which in the Boolean case can be
implemented in terms of AND and OR:

xIx/\y = (x0y)
y@xVy=(xly)

Majority-n from sorter networks

> Sort all input bits and pick the middle one from the sorted list

» Sorter networks consist only of comparators, which in the Boolean case can be
implemented in terms of AND and OR:

xIx/\y = (x0y)
y@xVy=(xly)

> Sorter networks for 7 bits requires 16 comparisons (optimal), we can
drop 2 — 28 majority gates

X1
X2
X3
X4
X5
X6
X7

..X7>

oo 60 oo

o0 60 00
=

Majority-n from sorter networks

» |dee: Sort all input bits and pick the middle one from the sorted list

» Sorter networks consist only of comparators, which in the Boolean case can be
implemented in terms of AND and OR:

xIx/\y = (x0y)
y@xVy=(xly)

» Example: Sorter networks for 7 bits requires 16 comparisons (optimal), we can
drop 2 — 28 majority gates

X1
X2
X3
X4
X5
X6
X7

oo 060 oo

o0 60 00
—~
2
bas
N
~

Majority-n from median selection

> An algorithm that finds the median of given values {a;,...,an}
using O(n) comparisons (it does not sort all elements)

Majority-n from median selection

> An algorithm that finds the median of given values {a;,...,an}
using O(n) comparisons (it does not sort all elements)

> (X7 ...xn) = [median of {x1,...,xn}]

Majority-n from median selection

> An algorithm that finds the median of given values {a;,...,an}
using O(n) comparisons (it does not sort all elements)

> (X7 ...xn) = [median of {x1,...,xn}]

» Good asymptotic upper bound, but the construction is quite complex

Majority-n from median selection

> An algorithm that finds the median of given values {a;,...,an}
using O(n) comparisons (it does not sort all elements)

> (X7 ...xn) = [median of {x1,...,xn}]
» Good asymptotic upper bound, but the construction is quite complex

» Majority-7 based on median selection construction has at least 42 majority gates

Shannon decomposition and majority decomposition

Shannon decomposition

For any Boolean function f(x1,...,%xn) we have

f=xq ? fy, @ f;q = Xifxi & iifgi

i

Shannon decomposition and majority decomposition

Shannon decomposition

For any Boolean function f(x1,...,%xn) we have

f:Xi?fx

i

sz = xifx @ Xifx,

Majority decomposition [S.B. Akers Jr., 1961]

For a monotone Boolean function f(x1,...,X%n) we have

f= <Xifxif>_q> = X;fol (&) Xifi-l &) fxif;i

From BDDs to majority graphs

<X] X2X3X4X5>

Binary decision diagram

From BDDs to majority graphs

<X]X2X3X4X5> <X1 X2X3X4X5>

Binary decision diagram Majority graph

From BDDs to majority graphs

<X]X2X3X4X5> <X1X2X3X4X5>

<X]X2X3X4X5>

Binary decision diagram Majority graph Majority graph (compact)

Upper bounds for majority-n decomposition

n 3 5 7 9 11 13 15 17
Optimum 1 4 7

BDDs 3 8 15 24 35 48 63 80
Sorter networks 6 18 32 50 70 90 112 142
Median selection* 18 30 42 53 65 77 89 101

*optimistic: takes only into account number of comparators

Deriving the optimum majority-5

) Apply distributivity rule
g.g <<X4X5O>X3 <X4X51>> = <X4X5 <O‘<;1>> = <X4X3X5>
G & O
4) @

uE 5 T

Deriving the optimum majority-5

Apply relevance rule

m
g.g bez) = (ayze)
g & ®

ONg! (4)

4 5 T

Deriving the optimum majority-5
Apply relevance rule

(M
@.@ (xyz) = (xyzy/g)
@ G @

<OX3 <0X4X5>> = <0X3 <OX4X5>0/;<3> = <OX3 <)_(3X4X5>>
ONE (4)

4 5 T

Deriving the optimum majority-5
0 Apply relevance rule
g.g bez) = (ayze)
@ @ @ (Ox3(0xaxs)) = (0x3(0xax5)0/55) = (0x3(X3X4X5))

ONE (4) (Ix3(Txaxs)) = (Ix3(Txaxs)1 /,) = (1x3 (Raxaxs))
1 5 T

Deriving the optimum majority-5

Apply distributivity rule
<<X2AB>X] <X2AC>> = <X2A(BX] C>>

Deriving the optimum majority-5

Apply distributivity rule
<<X3AO>X] <X3A]>> = <X3A<0X] 1>> = <X3AX1>

Deriving the optimum majority-5

(2)
3 @
4 1T @

3

Deriving the optimum majority-7

Identify majority-5

There are actually four majority-5 subnetworks in the
graph

Deriving the optimum majority-7

Consider left branch

Deriving the optimum majority-7
1) Identify majority-3

(2)

o
@ @
o o
6) (6

4 7 T

Deriving the optimum majority-7

1) Relevance
2) Changes constants into primary inputs
3 ()
9.9
& &
6 | 6

Deriving the optimum majority-7
) Distributivity
(2)
(3)

& &

Deriving the optimum majority-7

Distributivity

Deriving the optimum majority-7

Remove | and T

Deriving the optimum majority-7

Replacement rule
We have

(xyz) = (Wyz)
if and only if (y®z)(wdx)=0.

Deriving the optimum majority-7

Replacement rule

Deriving the optimum majority-7

Distributivity + Ms optimum

Deriving the optimum majority-7

Swapping rule

Let vi,v2, Wy, W not depend on x and y. We have

Oc(yviwi){yvawa)) = (xyvow){yviwa)),

if (vi @v2)(w; ®&wy)=0.

Deriving the optimum majority-7

Distributivity and relevance

Deriving the optimum majority-7

@ Optimum result

® @

Conclusions

> How many majority-3 operations do we need to realize
majority-n (precisely)?

Conclusions

> How many majority-3 operations do we need to realize
majority-n (precisely)?

» Constructions that were used to show good asymptotic upper bounds are not
helpful for small n

Conclusions

> How many majority-3 operations do we need to realize
majority-n (precisely)?

» Constructions that were used to show good asymptotic upper bounds are not
helpful for small n

» Proposed construction method based on BDDs by exploiting decomposition
property for monotone functions

Conclusions

> How many majority-3 operations do we need to realize
majority-n (precisely)?

» Constructions that were used to show good asymptotic upper bounds are not
helpful for small n

» Proposed construction method based on BDDs by exploiting decomposition
property for monotone functions

> Majority-9 and more insight into analytical derivations

The fascinating properties of majority
Mathias Soeken
Integrated Systems Laboratory, EPFL, Switzerland

¥ mathias.soeken@epfl.ch @ msoeken.github.io) msoeken/cirkit

(P

mailto:mathias.soeken@epfl.ch
https://msoeken.github.io
https://github.com/msoeken/cirkit

